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It is shown that natural vibrations, localized around the inclusion, are possible in a system consisting of an “infinite string on an 
elastic foundation-concentrated inertial inclusion which moves at a constant, subcritical velocity”. The evolution of the trapped 
mode of oscillations is described analytically for the case of a slowly accelerating inclusion, i.e. the dependence of the amplitude 
of the oscillations on the frequency is found. The solution which is constructed holds in the time interval when the velocity of 
the inclusion is not close to the critical velocity (the non-resonance case). An approach to the solutions of similar problems, 
based on the method of multiple scales, is proposed which enables one to reduce the solution of a problem to investigating an 
ordinary differential equation with slowly varying coefficients. 0 2003 Elsevier Science Ltd. All rights reserved. 

The problem considered here of the dynamics of a string on an elastic foundation which is acted upon 
by a concentrated, moving, inertial load can be of interest for two reasons. 

First, it is well known [l] that natural oscillations which are trapped near the inclusion are possible 
in an “infinite string on an elastic foundation<oncentrated, fixed inertial inclusion” system. It is shown 
below that, if the inertial inclusion moves at a constant subcritical velocity, a trapped modes of oscillations 
are also possible. If, however, an inclusion is considered which moves along the string with a small 
acceleration, then the problem of describing the evolution of a trapped mode of oscillations in a system 
with slowly varying parameters with respect to time naturally arises. The development of an approach 
to solving such problems is one of the aims of this paper. 

Second, it is well known that it is impossible to exceed the critical velocity of an inertia-less, 
concentrated, accelerating load moving along a string. Solution of the problem in a linear formulation 
shows that, at the instant when the critical velocity is exceeded, the spatial derivative of the displacements 
of the string in front of the load becomes infinite [2-4] and, as a consequence, an infinitely large 
longitudinal force of wave impedance to the motion acts on the load [5]. A consideration of the problem 
in a non-linear formulation also does not completely resolve this paradox [6]. The hypothesis was put 
forward in [7] that the paradox can be removed if an inertial load is considered. Then, the force acting 
on the string from the side of the inclusion at the instant when the critical velocity is exceeded could 
turn out to be zero when there is a non-zero external force acting on the load. In this case, it would 
become possible for the critical velocity to be exceeded. Another aim of this paper is to obtain the 
asymptotic form of the solution of the problem of surmounting the critical velocity of an inertial load 
in the case of an acceleration which approaches zero. It should be noted that the solution for an 
accelerating load, which is obtained below, only holds in the time interval when the velocity of the load 
is not close to the critical velocity (the non-resonance case). Nevertheless, the stage necessary to construct 
the solution in the resonance case is carried out. 

1. FORMULATION OF THE PROBLEM 

We introduce the following notation: U(X, t) is the displacement of the point of the string with coordinate 
x at the instant of time t, TO is the tensile strength of the unperturbed string, p is the density per unit 
length of the string, c = m is the speed of sound (the critical velocity), I(t) is the loading coordinate 
(a specified function), u(t) = i(t) and a(t) = i’(t) are the velocity and acceleration of the load respectively, 
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p = u/c, kc = Tok > 0 is the coefficient of elasticity of the foundation, b(t) = Tax(t) is the transverse 
force acting on the string on the side of the load,fo(t) = r&t) is the external transverse force acting 
on the load, m. = Tom is the mass of the load, u. is the deflection of the string at the point of application 
of the load and 8 is the Heaviside function. 

The equations of the dynamics of the string and the load have the form 

u”+-ku = -x(t)li(x - f(r)), miio = -x(r) + f(r) (1.1) 

The kinematic relation 

UrJW = u(40, 0 (1.2) 

holds. 
Regarding the load, we assume that it suddenly arises when r = 0 and, moreover, the string has been 

in a state of rest up to this instant. We therefore put x(t) z 0 when t c 0. Correspondingly, a generalized 
Cauchy problem [8] with the conditions 

4-G t> I,<() = 0, 4-v) I,<() 3 0 (1.3) 

is set up for the first equation of (1.1). 
We shall assume that I(0) = 0, u(O) = u. and that ] u. ] < c. 
We consider the first equation of (1.1) in a system of coordinates 5 = x - f(t), r = r which moves 

together with the load. Taking account of the first equation of (1.1) and relation (1.2) we have 

(1.4) 

2. THE INTEGRAL EQUATION FOR THE FUNCTION x 

The first equation of (1.1) is an inhomogeneous Klein-Gordon equation. Its solution can be represented 
in the form of a convolution of the fundamental solution [8] with the rightful part. Taking (1.3) into 
account, we obtain [4, 91 

(2.1) 

‘l’(t,z,x) = k(c*(t - T)* -(ox -r(Q)* 

In the case of subcritical motion of the load, the first equation of (2.1) gives 

On the other hand, by virtue of the second equation of (1.1) 

%I = $m - X(m(r - TM (2.3) 

Equating the right-hand sides of Eqs (2.2) and (2.3) we obtain an integral equation of the first kind, 
the solution of which is x(t). Differentiating this equation with respect to t, we obtain the integral equation 
of the second kind 

(2.4) 

Integral equation (2.4) is convenient for the numerical solution of the problem. 
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3. MOTION WITH CONSTANT VELOCITY 

We put a = 0 and consider the homogeneous (f = 0) stationary problem (we drop initial conditions 
(1.3)) of the natural oscillations of the system described by Eq. (1.4). Suppose 

u = UC{> exp (-ifZQ, u, = C/e exp (-im) (3.1) 

It is well known [l] that, when u = 0, this system has a mixed spectrum of natural oscillations. 
Sinusoidal travelling waves correspond to the frequencies ] 511 2 cfi (where cfi is the cutoff frequency). 
These frequencies form a continuous spectrum. The specific feature of systems with inertial inclusions 
is the fact that a discrete spectrum of natural frequencies of the oscillations can exist for which ] Sz ] < 
cfi and the modes are localized in the neighbourhood of the inclusions. In such cases, one speaks of 
trapped modes of oscillations. In the given case, a single frequency +Q, exists for which the eigenvalue 
problem being considered has a non-trivial solution; a mode of oscillation which decays exponentially 
at infinity corresponds to this frequency. 

We will show that an analogous situation also holds in the case when ] u ] = const < c. Since trapped 
modes of oscillation are of interest, we will formulate the boundary conditions at infinity in the form 

u -+O, when c+*- 

Substituting expressions (3.1) into Eq. (1.4), we obtain 

Utc - 2iB(Q)Ug - A2(R)U = - 

where 

The dispersion relation for the operator of the left-hand side of Eq. (3.3) has the form 

o2 - 2B(R)o + A2(f2) = 0 

whence 
CO = B(R) f iS(Q) 

The solution of Eq. (3.3) when 2) < c can be written in the form 

U(5) = 4) 
m@ expt-S(&) 15 1 +iB(S2&) 

x1 - P2)S(Q)) 

where 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Here, Q* is the cutoff frequency for an inclusion moving along the string and s(Q) > 0 when Q < Q2,. 
Noting that U(0) = U,, we obtain the frequency equation 

mQf = 2(1- fi2)S(Ro) (3.9) 

from which we find the value of the frequency corresponding to the trapped mode of oscillations 

i2; = 2ms2ce2( I+ m2c2k(c2 --u 2, - 1) (3.10) 

On comparing the linear combination of solutions corresponding to the frequencies k&2,,-,, we obtain 
an expression for the real solution of Eq. (1.4) which corresponds to oscillations which are trapped in 
the neighbourhood of the load 
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u = Cexp(-S(Ro)~~~)cos(RO~- B(RO)5+D) 

where C and D are arbitrary constants. 

Remark 1. When u -+ c - 0, we have 

k2m2c4 
S2(Q,)y- 

(3.11) 

(3.12) 

We will now consider the inhomogeneous problem, assuming that the external load f is constant. 
Applying a generalized Fourier transformation with respect to time to Eq. (1.4) when II = 0, we obtain, 
taking account of the zero initial conditions 

where F is the Fourier transformation operator. Hence 

/;[%I = feel 
2( 1 - p2)s(n) - mR2 

(3.13) 

(3.14) 

In the case of large z, an asymptotic estimate for U, can be obtained, starting out from relation (3.14) 
by the stationary-phase method. It is well known [lo] that the motion of the inclusion when r + M has 
the form 

(3.15) 

where the summation is carried out over the set of frequencies ofI = (0, +Q,, +a,} (which are different 
when ] u ] < c). The expressions 

(01 II, = f ) 2UpJ’=- mc2f 

m2c2R2 + 2 ’ 
urn,) = o(,r-3/2) 

0 

(3.16) 

can be obtained for the “amplitudes” Uy). 
Hence, the solution u. is asymptotically represented by the sum of the non-decreasing contributions 

from the frequency of the trapped made of oscillations Qzo and the zero oscillation. The contribution 
to the solution from the continuous spectrum is asymptotically determined by the decreasing contribution 
from the cutoff frequency 52,. 

4. MOTION WITH A SMALL ACCELERATION 
We shall assume below that the acceleration a = O(E) of the load is small and seek an asymptotic solution 
of the problem when 

(4.1) 

Problems of an inertia-free load on a string [4] and of a Timoshenko beam [ll] on a deformable foundation 
have been considered previously in an analogous formulation. A solution was obtained for the wave fronts using 
estimates of the convolution integral of Green’s function of the Klein-Gordon operator with the right-hand side 
of the first equation of (1.1). 
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If the acceleration a of the load is small, the coefficients on the left-hand side of Eq. (1.4) are slowly 
varying functions of time. The idea behind the approach proposed below is as follows. For long times, 
the system (when there is no external force) essentially behaves as a one-degree-of-freedom system, 
and it is therefore natural to expect that the evolution of a trapped mode of oscillations can be described 
using an ordinary second-order differential equation with slowly varying coefficients. It is preferable 
to obtain this equation without determining the evolution of the solution of Eq. (1.4) with respect to 
the spatial variable 5 since the latter problem is exceedingly complex. It turns out that this is possible. 

We will seek particular solutions of Eq. (1.4) for 5 c 0 and 5 > 0 in the form 

uy (5. ‘5) = WY (X, T)exp(cpy (5, W, X = q, T = a (4.2) 

‘pi = io( X, T), cp; = -ii2( X, T) 

Here, W(X, T), o(X, T) and Q(X, T) are unknown functions which are to be determined using Eq. (1.4); 
W = W,, and cp = ‘pu if sign 5 = y. We require that the frequencies o(X, r) and Q(X, T) should satisfy 
dispersion relation (3.5) and the equation 

n;,+o;=o (4.3) 

which follows from the last two relations of (4.2). The phase (~(5, z) is determined using the formula 

cp=ij(dg2dq (4.4) 
. 

The solution of Eq. (1.4) is continuous when 5 = 0, and we therefore require the continuity of 
W(X, T) and (~(5, t) at a point under the load. For L+, we have 

~00) = WO, r) exp(cpoO)), cpo(‘r) = cp(O, f> (4.5) 

We shall only consider the non-resonance case. This case holds if the quantity 1 c - u(T) 1 is non-zero 
and all the frequencies from the set, over which the summation on the right-hand side of equality (3.15) 
is carried out, can be assumed to be different. 

We will assume that the characteristic time, after which the velocity u undergoes substantial changes, 
is significantly greater than the characteristic time after which the establishment of wave processes takes 
place in the case when a = 0 (so that the asymptotic form of (3.15) describes the solution well). In this 
case, the solution of the problem of the motion of a load with constant velocity shows that it is natural 
to make certain “a priori” assumptions regarding the structure of the solution in the case of a small 
acceleration a. We shall assume that, for long times, the solution of the problem has the form 

uo(Q = C U$“(T)exp(cp~*)(r))s C ua) 
ma(T) RdT) 

(4.6) 

dva’ - = -ifl( T) 
df 

where the summation is carried out over the set of frequencies o(T) = (0, +Qa(T)> (the frequency Q0 
depends on the slow time Tin accordance with formula (3.10)). In fact, the solution will also obviously 
contain modes of oscillation with other frequencies; in particular, taking account of the mode with 
frequency CL(T) can be important, especially in the resonance case. 

The problem of finding a particular solution of Eq. (1.4) which satisfies condition (4.6) therefore arises. 
In the non-resonance case, the modes of oscillation, which correspond to frequencies from the set o, 
can be considered as independent and the contribution from each of these frequencies can be determined 
independently. The required particular solution can therefore be sought in the form of the superposition 
of three solutions u (*I which when sign 5 = y, have the form of (4.2) for which Q(0, T) E o(T). 

Formally integrating Eq. (1.4) over an infinitesimal neighbourhood of the point 4 = 0, we find that 
solution (4.6) must obey the equation 

mu& -f=WP2)b~l (4.7) 

Henceforth, the jump in a quantity when E = 0 is indicated by square brackets. 
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Equation (4.7) can be split into three equations for each of the functions c&“) by using the linear 
independence of the terms corresponding to the different frequencies from the set CT. 

An approach, based on the method of multiple scales [12], is proposed below which enables us to 
determine the unknown functions Uho)( T). 

5. THE CONTRIBUTION FROM THE NATURAL FREQUENCY +sZ,, 

Suppose 51 = 6!&, 6 = +l, 520 > 0. Furthermore, for brevity, we shall omit the subscript (6&) in the 
case of the functions uo, w and cpa. For the mode of oscillations with frequency &Jo, we have, by virtue 
of relations (4.2) 

w& = (1 - P2)(~O[WI~)1+ W~lexp(q&N) (5.1) 

The quantity ~(0, T) = e+ is calculated using formula (3.6) when SL = 6% (the root which corresponds 
to a decreasing solution when 5 + M is chosen). 

We will now make use of a modification of the method of multiple scales for linear equations with 
slowly varying coefficients [12, Ch. 71 and seek the function V,, in the form of the asymptotic series 

U,(T)= f &Q&T) (5.2) 
j=O 

As is customary when using the method of multiple scales, we will assume that the variables cpo and 
Tare independent. Derivatives with respect to r are transformed according to the rules 

c.>: = 46 iloa,po + Ear (5.3) 

(.)‘, = -n;a$)#J - 2&iSR(&r - m&a,, + &*a:, 

and, when these rules and equality (5.1) are taken into account, it can be verified that the zeroth 
approximation equation is identically satisfied by virtue of frequency equation (3.9). In order to 
determine the unknown function U:(T), it is necessary to consider the equation of the first approximation 

2!&!J& + C&-U,” = im-‘6(1- p*)[ Wi] (5.4) 

in which, by virtue of frequency equation (3.9) there is no term associated with the first approximation 
UA. Equation (5.4) contains the unknown quantity [Wi]. We determine this quantity by considering 
Eq. (1.4) when 5 = 20. 

We again use the method of multiple scales. For brevity below, we shall omit the subscript y in the 
case of the functions Wand w. We employ an approach which is similar to that used above in the case 
of Eq. (5.1) and has been extended to the case of a partial differential equation with slowly varying 
coefficients. We put 

W(X,T)= i &‘Wj(X,T) 
j=o 

(5.5) 

The variables cp, X and T are assumed to be independent. The time derivatives in (1.4) are transformed 
using formulae (5.3), where cp has to be taken instead of ‘po. Furthermore, we have 

a,=ioa,+E2~ 

a& = -0*a& + 2d.0a:, + ~h.0; a9 + E*a2, 

a;, = CDqa, + EiWa& - Ei&&-& + EiCi@, + &*a:, 

(5.6) 

Substituting the expressions for the derivatives and the asymptotic expansion into Eq. (1.4) we obtain 
that the zeroth approximation equations are satisfied identically by virtue of dispersion relation (3.5). 

In order to determine the first term W” of series (5.5) it is necessary to consider the first-approximation 
equation 
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We have 

(1-p2)(20w;‘+w;,wo)+21K-2(~wTo’-mow~’+~;wo)+ 

+ac-*OW0+c-*6(2R0W~‘+R~,W0)=0 (5.7) 

0; = 6&Q; = -who; (5.8) 

by virtue of Eq. (4.3). Transforming Eq. (5.7) we obtain 

@O’S 1 i F. 
2i@(Q)(C* -i *)j=O ’ (5.9) 

Fo=aoWo, F,=2(uo+6Qo)W; 

4 = (_(c2 -v2)o&$ +2uo; +m;,,w” 

Calculating the jump when X = 0 from here, we find, on taking account of the fact that W”(O, 7’) = 
U%T)t 

(5.10) 

Substituting the first eq,uation of (5.10) into Eq. (5.4) and using frequency equation (3.9) we obtain 

(5.11) 

Equation (5.11) enables us to determine the unknown function U:(T). The coefficient of U& is equal 
to 

2* 
0 
+ 31 -p*Fh 

nl*C*R* 0 I =2 
t?12C2Q2 +2 0 

6=1 n12c2R 0 

We now use the notation 

z=rn*c*R;+2, h=1+m2c2k(c2-u2)=z2/4 

The solution of Eq. (5.11) has the form 

u: 
CO =lJ,ex -1 

d 

(I- P2 wo + @2 ) I&, &. 

Qoz I 

(5.12) 

(5.13) 

(5.14) 

where Co is an arbitrary constant. It remains to evaluate the integral on the right-hand side of the first 
equation of (5.14). We have 
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s;. &d3L+ tnc2vai2~ % 
L-p2 (c2 -v 2)2 ’ 

@4 l&,=3+-+ 
2av 3Qo 

l-P2 (cz-v2)2 

J2 =ex -I 
(1 - B2Po Is=, d* 

aoz I 

J, = ex 
( 

-J (I - P2 93 Iti=, fl a z 
I 

= J; J, 

J, =exp(-j&dv)= J,J,o 

J, =e~p(-j~,~$-;~,)=&- 

J 10 =ex J 
d 

dv ’ 

2(c2 -v ‘)xK 1 

J, =ex -J 
d 

(‘-b2)% is=, dT R z 
I 

= J,J,J, = J;‘J5J;d 

J, =exp(-Jf$)e~p(Jm2c2~d’o)=~& 

Finally, we obtain 

(5.15) 

Remark 2. When u A c - 0, we have Uo - ” - O((c’ - u’)“) by virtue of the second expression of (3.8) and the 
asymptotic formulae (3.12). 

6. THE CONTRIBUTION FROM THE FREQUENCY !2 = 0 

The existence in the solution of a contribution with zero frequency 
external force acts on the system. Taking into account dispersion 
conditions at infinity (3.2), Eq. (4.7) gives 

(0) _ f f 110 - 
2ww - P2) = m 

is due to the fact that a constant 
relation (3.5) and the boundary 

(6.1) 

The right-hand side of this equation is identical with the right-hand side of the first equation of (3.16) 
and, also, with the subcritical solution of the problem of the slow acceleration of an inertia-free 
load [4]. 

To sum up, we have obtained 

(6.2) 

In order to determine the unknown constant Co, it is necessary to make use of the initial conditions. 
We assume that Vi@), when t = 0, is equal to the expression on the right-hand side of the second equality 
of (3.16), calculated when u = uo. 
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0 20 40 I 0 4 8 I 

Fig. 1 

7’. COMPARISON WITH NUMERICAL RESULTS. CONCLUSIONS 

Numerical calculations, based on Eq. (2.4) were carried out in order to check the asymptotic solution 
constructed above. These calculations were carried out using the following values of the parameters: 
c=l,k=2,m= 2,f= l,ua=O h w en a = 0.02 and a = 0.1 (Fig. 1). The solid curves represent the 
numerical results and the dashed lines show the analytical results (a graph of the envelope of the 
analytical solution is given on the left). It is seen that, even if the acceleration of the load is quite large, 
such that the time interval from the beginning of the acceleration up to the instant when the critical 
velocity is exceeded fits into just one and a half periods of the natural oscillations of the inclusion, the 
asymptotic solution constructed is in good agreement with the calculated solution. As would be expected, 
this solution inadequately describes the dynamic process at short times and in the case of values of 2) 
which are close to c. Note that the results of the investigation of the problem even in the non-resonance 
case and, also, the results for the resonance case enable us to assume that, as the velocity approaches 
the critical velocity, a system with an inertial load behaves in the qualitatively similar manner to a system 
with an inertia-free load. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-00693, 
01-01-06094). 
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